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Abstract Analysis of protein NMR data involves the

assignment of resonance peaks in a number of multidi-

mensional data sets. To establish resonance assignment a

three-dimensional search is used to match a pair of com-

mon variables, such as chemical shifts of the same spin

system, in different NMR spectra. We show that by dis-

playing the variables to be compared in two-dimensional

plots the process can be simplified. Moreover, by utilizing

a fast Fourier transform cross-correlation algorithm, more

common to the field of image registration or pattern

matching, we can automate this process. Here, we use se-

quential NMR backbone assignment as an example to show

that the combination of correlation plots and segmented

pattern matching establishes fast backbone assignment in

fifteen proteins of varying sizes. For example, the

265-residue RalBP1 protein was 95.4 % correctly assigned

in 10 s. The same concept can be applied to any multidi-

mensional NMR data set where analysis comprises the

comparison of two variables. This modular and robust

approach offers high efficiency with excellent computa-

tional scalability and could be easily incorporated into

existing assignment software.

Keywords Automation � Backbone assignment � Fast

Fourier transform � Cross-correlation � FFT

Introduction

Solving the structure of a protein by NMR spectroscopy is

a complicated task that requires analysis of multidimen-

sional spectra, many of which contain hundreds, if not

thousands, of peaks. A great deal of this process involves

recognizing patterns in the data that are sometimes not

obvious, for example, linking residues in backbone reso-

nance assignment, side-chain resonance assignment, and

analysis of NOESY data for generation of distance re-

straints. The relevant information is usually extracted from

a combination of multiple NMR data sets that might be

acquired at different times and on different spectrometers.

Therefore, this process is sensitive to experimental varia-

tions. For instance, backbone assignment typically involves

matching a pair of NMR resonances within one-dimen-

sional strips of at least two 3D spectra. Variations along

this dimension in the different experiments will make it

difficult to create perfect matches. In addition, resonance

matching is completed for each pair of residues in a se-

quential manner. Consequently when the protein size in-

creases, this process becomes extremely slow due to the

number of possible matches that need to be considered. For

these reasons, the overall process of NMR resonance

identification is a bottleneck in NMR structural studies.

Substantial efforts are underway to automate some or all

stages of NMR resonance assignment for use in high-

throughput structure analysis (Dutta et al. 2014; Linge et al.

2003; López-Méndez and Güntert 2006; Rieping et al.

2007; Volk et al. 2008, for a review see Güntert 2009;

Moseley and Montelione 1999; Williamson and Craven
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2009). For protein backbone assignment, there are a col-

lection of strategies based on optimization of fit between

measured data and external or predicted information, for

example the programs Mars (Jung and Zweckstetter 2004),

AutoAssign (Zimmerman et al. 1993), PINE (Bahrami

et al. 2009), GARANT (Bartels et al. 1997), and the al-

gorithm by Lukin (1997). Each of these methods offers

different advantages and scalability. In general, as the

protein gets larger, the performance of these methods is

severely reduced. Approaches that aim to reduce the search

space of this problem have included the exploitation of

geometric relationships that exist within correlated NMR

data sets (Borkar et al. 2011; Chen et al. 2010; Hiller et al.

2005) or connectivity matrices that can rapidly exclude

poor linkage candidates (Xu et al. 2006). It is important to

note that improvements in data quality can increase the

chances of successful automated assignment, for example

by using global alignment as a pre-processor (Buchner

et al. 2013).

Interestingly, we often superimpose multiple 2D-spectra

to visually identify similarities or differences between

them. Global matching has the advantage that the time it

takes to solve the problem scales more favorably as the

system gets larger in comparison to the conventional ap-

proach to backbone assignment, which is local and se-

quential. Humans are excellent at pattern recognition and

often outperform computers, which accounts for the high

amount of manual intervention necessary in analyzing

densely populated NMR data sets. In crowded regions,

local patterns can provide excellent initial guesses for data

matches that can be subsequently validated with additional

NMR data. We set out to replicate this natural human

ability by borrowing from the field of image registration.

The key concept that we are proposing is to display the two

variables obtained from an NMR spectrum, in this case

chemical shifts, to be matched as a two-dimensional plot.

Therefore comparison of these variables obtained from

different NMR spectra can be done using pattern recogni-

tion approaches. One of the most simple, effective, and fast

methods to align and match two-dimensional patterns is

fast Fourier transform (FFT) cross-correlation. In this study

we will evaluate whether there is a benefit of implementing

this global approach for resonance identification using

protein backbone assignment as an example. We started by

creating a two-dimensional plot of the two carbon fre-

quencies (Ca and Cb) extracted from two 3D NMR data

sets, which provided i to i - 1 linkages when aligned and

matched. In addition, the correlation between amide ni-

trogen and proton frequencies for all of the residues pro-

vided spin system information. These two global matching

procedures ensured simultaneous assignment of all data.

We evaluated this protocol on four experimental data sets

and ten synthetic data sets for proteins up to 723 residues in

size, which resulted in near-complete assignment in six

cases in just a few seconds. In the other eight cases, in-

crease in protein size, incomplete assignment and overlap

in the two-dimensional plots were found to decrease the

effectiveness of the algorithm. We also expanded the al-

gorithm to carbonyl data sets for the 226-residue glutamine

binding protein (GlnBP) to highlight the flexibility of the

protocol.

The FFT cross-correlation algorithm (Srinivasa Reddy

and Chatterji 1996) is excellent at handling uniform

translation, shear, and expansion of the patterns but poor at

handling non-uniform shifts. To test the robustness of the

algorithm, we intentionally introduced a first order phase

artifact along the carbon dimension in one of the NMR

experiments that resulted in a non-uniform shifting of peak

positions. By dividing the regions into distinct subsections,

however, we could eliminate the effect of non-uniform

shifts during the calculation. We also tested the noise tol-

erance of the algorithm and found that a grid search of

input parameters drastically reduced the number of errors

introduced by noise. Finally, our protocol is easy to im-

plement and has enough flexibility to be easily incorpo-

rated into currently existing analysis schemes, offering

overall improvement in efficiency and scalability with

potential for broad applications.

Materials and methods

Protein purification

15N/13C-GB1, 15N/13C-ubiquitin, the UEV domain of
15N/13C-TSG101 (residues 1–145) and 15N/13C-glutamine

binding protein (without glutamine) were produced as pre-

viously described (Gronenborn et al. 1991; Lazar et al. 1997;

Pornillos et al. 2002; Bermejo et al. 2009, respectively).

NMR spectroscopy

All NMR experiments were collected at 300 K using a

Bruker Avance 600 MHz spectrometer equipped either

with a cryogenic or room temperature probe, with 8 scans,

and a carbon spectral width of 8445.946 Hz unless other-

wise indicated. The following three-dimensional triple

resonance experiments were collected: GB1 CBCA(CO)NH

(512 9 52 9 40) complex data points in the 1H, 13C, and
15N dimensions, HNCACB (512 9 57 9 40), 12 scans;

ubiquitin (room-temperature probe) CBCA(CO)NH

(512 9 57 9 52), HNCACB (1024 9 57 9 32); TSG101

CBCA(CO)NH (512 9 52 9 40), HNCACB (512 9

57 9 40); GlnBP (cryoprobe) CBCA(CO)NH (512 9 50 9

44), HNCACB (512 9 57 9 42); GlnBP (room-tem-

perature probe) HNCA (1024 9 64 9 25), 12 scans, with a
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carbon spectral width of 1562.5 Hz; HN(CO)CA

(1024 9 40 9 30), 16 scans, and a carbon spectral width

of 1758.715 Hz; HNCO (1024 9 47 9 32), 12 scans,

with a carbon spectral width of 1785.71 Hz; HN(CA)CO

(1024 9 40 9 30), 48 scans, and a carbon spectral width of

1758.715 Hz, all as previously described (CBCA(CO)NH,

Grzesiek and Bax 1992a; HNCACB, Wittekind and Mueller

1993; HNCA, Grzesiek and Bax 1992b; HN(CO)CA, Bax

and Ikura 1991; HNCO, Kay et al. 1994; HN(CA)CO, Clubb

et al. 1992).

TSG101 HNCACB non-linear shift addition

To test the robustness of the algorithm to non-linear shifts

in the data, the HNCACB for TSG101 was altered to in-

clude an additional fixed 19.5 ls delay time during the

carbon evolution period. This introduced a first order phase

artifact in the spectrum and led to varying shifts in the peak

position across the spectrum.

Preparation of input data from experimental spectra

NMR spectra were processed using NMRPipe (Delaglio et al.

1995) and analyzed using either Pipp (Garrett et al. 1991) or

CCPN Analysis 2.4.1 (Vranken et al. 2005). For experimental

NMR data (GB1, ubiquitin, TSG101, and GlnBP), peaks were

picked manually using CCPN Analysis. Any folded peaks

were unaliased at this point. Peaks could also be picked au-

tomatically using the Initialise root resonances and Pick and

assign from roots macros within CCPN Analysis, which

produces generic spin systems by naming peaks in the HSQC

and picking corresponding peak strips in the triple resonance

spectra. This process has the advantage that the noise outside

of the strips, as well as side chain resonances from glutamine

and asparagine residues can be discarded before further data

analysis takes place. Although manual checking of these peak

lists is still necessary to remove noise within strips in both

spectra and the weak i - 1 peaks in the HNCACB, HNCA,

and HN(CA)CO spectra, the overall time taken to analyze

each spectrum is reduced dramatically. Peak lists were then

output from CCPN Analysis as text files containing one row

for each spin system arranged into four columns (HN, N, C1,

C2 where C1\C2 for all residues except glycine where

Ca = C1 = C2). Text files containing the one-letter amino

acid sequence of the proteins were also prepared. Spectra were

also manually assigned using CCPN Analysis in order to

verify the automated assignments.

Preparation of input data from BMRB chemical

shift lists

Our protocol was tested on a range of proteins from the

BMRB, including echidna domain 11 IGF2R, (BMRB code

17287, Williams et al. 2012), the N-terminal NEAr iron

transporter (NEAT1) domain of the IsdB hemoglobin re-

ceptor (19056, Fonner et al. 2014), oxidized Fe-containing

superoxide dismutase (SD, 4341, Vathyam et al. 1999),

mupirocin didomain ACP (diACP, 17111, Haines et al.

2013), ATP-bound ATPase (5576, Hilge et al. 2003),

GTPase-activing and Ral binding domains of RLIP76

(RalBP1, 17608, Rajasekar et al. 2012), CrkL (18321,

Jankowski et al. 2012), VRK1 (16715, Shin et al. 2011) and

malate synthase G (5471, Tugarinov et al. 2002). HN, N, Ca

and Cb chemical shifts were extracted from BMRB che-

mical shift tables and were converted to corresponding

HNCACB and CBCA(CO)NH tables with the same final

format as for the experimental data.

Computational algorithm

We used a modular approach and Python scripting lan-

guage throughout to aid with future portability of the al-

gorithms to other software (see Fig. 1 for a summary of the

algorithms used and below for further details). The com-

putations were performed on a MacMini with a 2.3 GHz

Intel Core i7 and 8 GB of memory, running OS X 10.8.5

and consisted of the following seven steps.

1. Read: Read input data in the forms of HNCACB and

CBCA(CO)NH peak lists and the backbone sequence.

2. Plot: Generate a pair of two-dimensional plots named

(a) amide and (b) carbon. For the amide plot, correlate

proton (HN) and nitrogen (N) backbone amide peaks

by plotting the chemical shifts for HN and N on the x-

and y-axes, respectively. This should be done twice,

one for each experiment (HNCACB and CBCA(CO)NH),

resulting in two overlaid data sets. Both should

roughly resemble the HSQC spectrum excluding side-

chains. For the carbon plot, correlate Ca and Cb peaks

by plotting the carbon chemical shifts from each

spectrum. In order to avoid too much manual

intervention, the lower value chemical shift (in

ppm) was plotted on the x-axis (C1) and the higher

value chemical shift on the y-axis (C2). The second

carbon shift for glycine is assigned to be the same as

the first carbon shift (Ca) to simplify the protocol,

hence for glycine, C1 = C2. Before plotting, the

chemical shift scale is converted from a continuous

scale to a discrete scale in order to create the boxes

needed for FFT cross-correlation. The user defines the

ppm resolution for this discretization (e.g., the size of

the boxes). These boxes are described by Hres. and

Nres. (for the amide plot) and Cres. (for the carbon

plot). Therefore, the dimension of each plot is defined

to be the range of the data in that dimension divided

by the desired resolution in ppm. As such, a lower
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value for Hres., Nres., or Cres. (smaller boxes) will

result in a longer computation time.

3. Align: Align the two plots using FFT cross-correlation

(see Supplementary Materials and Supplementary

Fig. 1). The user may optionally specify subregions

of the data in order to segment the plot and align these

subregions independently. Generally, the carbon plot

was divided into four regions (glycines, serine/thre-

onine, alanines, and others). The glycine region

(40\C1\ 50 ppm and 40\C2\ 50 ppm) was

separated since these peaks were found on the diagonal

of the plot and were best aligned by diagonal

translational shifts. Since serine and threonine chemi-

cal shifts were reversed (Ca\Cb) they needed to be

separated from the rest of the data (53 ppm\C1\
max., 0 ppm\C2\max., where max. is the highest

chemical shift in that dimension). Alanines were also

separated (0\C1\ 25 ppm, 0 ppm\C2\max.)

since their peaks on the plot were remote from the

other types of residues. The amide plot was not

segmented since non-linear shifts were not expected

and the plot was generally of higher quality (better

overlap). Maximum FFT cross-correlation translation

distances were related to Hres., Nres., and Cres. input

parameters by the following equations.

Max:distance H;Nð Þ ¼ 2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2
res: þ N2

res:

q

ð1Þ

Max:distance C;Cð Þ ¼ 7 � Cres: �
ffiffiffi

2
p

ð2Þ

4. Match: Matching is carried out for the amide and

carbon plots individually, using one-to-one nearest-

neighbor peak matching where one experiment is

HN

N  C1

 C2

 C1

 C2

READ
Read peak list and group 

spin systems

PLOT
Generate HN / N and C1 / C2 

plots

ALIGN
Segmented FFT 

cross-correlation

MATCH
Nearest-neighbor

pairing

LINK
Form chains in analogy to 

manual assignment

ASSIGN
Regular expression string 

matching

      HN         N          Cα                Cβ

7.5    121.3     54.5     65.2

GRID SEARCH
Repeat steps with varying 

align/match max. distances

i

i-1
i-2

SHGRTEEDRG

SHGRTEEDRG

REPEAT
Repeat steps until no more 

peaks can match

* * *

**

* * *

*
* **

*
*

*
*

*
*

*

*

*
*

*
*

*

*

Fig. 1 Automated backbone assignment protocol. Our protocol

(explained in detail in the text) consists of modular steps including

1. Read: Formation of spin systems from input peak lists. 2. Plot:

Generation of a complementary pair of two-dimensional scatter plots

using chemical shifts (ppm) for HN/N and C1/C2 atoms on the x-/y-

axes, respectively, from CBCA(CO)NH (circles) and HNCACB

(stars) spectra. 3. Align: For the HN/N plot—non-segmented FFT

cross-correlation alignment; for the C1/C2 plot—segmented FFT

cross-correlation alignment, to account for non-uniform shifts in data

(see main text for default regions). 4. Match: Matching of peaks using

nearest-neighbor pairing algorithm. 5. Link: Formation of linked

chains of residues using pairings in analogy to manual assignment. 6.

Assign: Use expected chemical shifts to assign glycine, alanine, serine

and threonine (see main text for definitions). Sort chains by length and

match to backbone string (sequence) using regular expression

matching. 7. Grid search: Repeat steps 2–6, each time with a

different set of input parameters, to find the optimal resolution needed

to obtain the highest number of error-free matches. Resolution was

related to maximum translation for fast Fourier transform cross-

correlation (step 3) and maximum distance for nearest-neighbor

pairing (step 4). Sequences were assessed for the percentage of amino

acids that could be matched uniquely (unambiguously assigned to the

backbone), non-uniquely (chains that could be matched in two or

more places), or that couldn’t be matched due to error. The best three

results were chosen based on the best score in each category,

respectively, with the caveat that all optimum results should score

well in all three categories
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chosen as the base spectrum (e.g. HNCACB) for which

its peaks are matched with their closest peaks in the

second spectrum (CBCA(CO)NH). The order in which

the peaks are matched does not matter since the

matching is one-to-one. Any peak that has two

neighbors at exactly the same distance will not be

matched, but is not yet discarded. Any unmatched

peaks will again be re-plotted, re-aligned, and matched

until no more matches can be made or until a specified

number of iterations is reached (the default value is

eight iterations). As for the maximum FFT cross-

correlation translation distance, maximum nearest-

neighbor distance was also related to the Hres., Nres.,

and Cres. (Equations 1 & 2) input parameters.

5. Link: Using the matches made in the previous step,

sequentially link the residues in a manner analogous to

manual assignment. Just like matching strips in

HNCACB and CBCA(CO)NH spectra, pairs of Ca/Cb

peaks can be used to link i and i - 1 residues. HN/N

pairs of peaks are used to match strips between

HNCACB and CBCA(CO)NH spectra (e.g. both peak

pairs will correspond to residue i). To begin, a peak is

chosen at random in the amide plot that corresponds to

residue i in the HNCACB. The matched peak from the

CBCA(CO)NH spectrum corresponds to residue i as

well, but will be linked to the i - 1 residue via the

previously formed arrays (HN, N, C1, C2). By checking

the match for the i - 1 CBCA(CO)NH peak in the

HNCACB spectrum, a second sequential link has been

made, but this time between two different strips.

Matches will continue to be read sequentially until no

more matches are available. The algorithm then

restarts reading matches, but this time in a forwards

direction starting at residue i (to i ? 1, i ? 2, etc.)

until no more matches are available. The algorithm

then chooses a new i residue at random and reads as

many matches as possible (both backwards and

forwards). This process is repeated until the number

of i residues that have been chosen matches the

number of residues in the backbone string. This whole

process produces chains of unassigned residues that are

sequentially linked.

6. Assign: Regular expression matching is used to match

sequentially linked chains to the backbone string. For

example, a chain such as XXXGSA could match the

sequence at KLMGSA or EFFGSA. The largest chain

is matched first, followed by the next largest chain,

etc., in decreasing order of size until no more chains

can be matched. The assignment process uses alanine,

serine, threonine, and glycine assignments derived

from regions in the carbon plot. These regions are

easily altered, which is recommended in the case of

unusual shifts. We used the following as our default

values: Alanine (0\C1\ 25 ppm, 0\C2\max.),

serine (C1 ? C2[ 115 ppm, C1 ? C2\ 126.5 ppm),

threonine (C1 ? C2[ 126.5 ppm, C1\max., C2\
max.), and glycine (40\C1\ 50 ppm, 40\C2\ 50

ppm, where C1 = C2 = Ca). In addition, proline

residues are blocked out in the regular expression

matching since prolines cannot be assigned.

7. Grid search: If one run using the default input

parameters was not sufficient to result in an error-free

assignment, a grid search of the Hres., Nres., and Cres.

input parameters was used to find the best possible

result. We found that, in general, changing Hres. did not

affect the results. Generally, a grid search consisted of

49 runs (1 value for Hres at 0.0045 ppm, 7 values for

Nres. between 0.04 and 0.065 ppm, 7 values for Cres.

between 0.045 and 0.065 ppm, i.e. 1 9 7 9 7 = 49

runs). Each run was usually complete in around a

second, so a grid search would usually take around

1 min, depending on the size of the search space

(number of parameter values to test) and the size of the

protein. Table 1 summarizes the recommended values

to use in a grid search for proteins of different sizes.

Output

Assignments are output as an assigned HNCACB table,

with the quality of the assignments assessed on a qualita-

tive and quantitative basis. Linked chains will either match

the backbone unambiguously (most likely correct assign-

ments), ambiguously (where the chain can match in two or

more places on the backbone), or erroneously (where an

error has been made, either in linking or assigning, which

results in no possible match to the backbone). These three

categories (unambiguous, ambiguous, and erroneous) were

scored as a percentage based on how many residues fit into

each category. The best score from each category (the

highest number of unambiguous and ambiguous assign-

ments, and the lowest number of errors) would be used to

choose the run with the optimal parameter input. Although

this method of error assessment would not always put ev-

ery residue in the correct category, it would usually find the

run with the optimal parameter set and has the advantage

that it requires minimal computation time in comparison to

other methods of calculating errors.

Extension to C0 chemical shifts

In order to show that the protocol is flexible and can be

applied to any set of experiments where patterns are to be

matched, we used our algorithm to assign GlnBP using

HNCA, HN(CO)CA, HN(CA)CO, and HNCO ex-

periments. As is the case for the HNCACB/CBCA(CO)NH
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spectral pair, these four experiments can be used to se-

quentially link backbone residues by exploiting known

magnetization transfer pathways and are often used in the

case of large proteins. For the carbon plot, in analogy to the

outlined HNCACB/CBCA(CO)NH protocol, Ca and C0

were plotted on the x- and y-axes, respectively, using two

pairs of two spectra – HNCA (i, Ca, x-axis, pair 1) with

HN(CA)CO (i, C0, y-axis, pair 1) and HN(CO)CA (i - 1,

Ca, x-axis, pair 2) with HNCO (i - 1, C0, y-axis, pair 2).

The HN/N plot was identical to the HNCACB/CBCA

(CO)NH HN/N plot. The algorithm was run in much the

same way as for the HNCACB/CBCA(CO)NH pair of

spectra (see Fig. 1), but with three exceptions. Firstly, the

carbon plot was not segmented prior to FFT cross-corre-

lation since there were no reversed (serine/threonine) or

diagonal (glycine) peaks in the absence of Cb chemical

Table 1 Results of backbone assignments using experimental or synthetic data

Protein BMRB code Number of residues Run time (s) Opt. time (min:s)

Total Assignable Assigned (%) Linked (%) Errors

Experimental (real) data sets

GB1a – 56 55 100 100 0 0.89 0:02e

Ubiquitina – 76 70 91.4 97.1 0 0.69 0:02e

TSG101a – 145 130 77.7 90.8 4 1.04 0:53f

GlnBPa – 226 204 46.1 86.8 15 4.26 4:38f

GlnBPb – 226 204 9.3 89.2 6 2.93 9:41f

Synthetic data sets (BMRB)

IGF2Rc 17287 140 133 99.2 100 0 1.18 0:17g

NEAT1c 19056 163 131 96.9 100 0 1.19 0:18g

SDc 4341 192 117 75.2 94.0 1 10.57 0:23g

diACPc 17111 212 168 95.2 99.4 0 11.52 1:51h

ATPasec 5576 213 155 54.8 87.1 1 8.50 1:10h

Tb24c 18011 218 191 73.3 97.9 1 57.85 1:10h

RalBP1c 17608 265 239 95.4 99.6 0 10.00 0:47i

CrkLc 18321 303 222 35.6 73.9 1 1.63 1:12h

VRK1c 16715 360 316 75.6 97.2 2 35.42 1:19h

MSGc 5471 723 647 59.7 98.1 9 42.21 1:37h

IGF2R noise addition

09 noised 17287 140 133 99.2 100 0 0.50 0:29f

0.59 noised – 140 133 99.2 100 0 0.58 0:30f

19 noised – 140 133 99.2 100 0 0.64 0:32f

1.59 noised – 140 133 79.7 97.0 3 0.93 0:35f

The algorithm presented in the ‘‘Materials and methods’’ section was used to assign the backbone of a variety of proteins, which included

segmented FFT cross-correlation to correct non-linear shifts in the data, followed by nearest-neighbor matching to link residues sequentially. For

each protein, the BMRB code is given, if available, followed by the number of residues, and the number of assignable residues. Assignable

residues exclude prolines, the N-terminus, and any residue that did not contain complete chemical shift data. The number of correctly assigned

and correctly linked residues was calculated as a percentage of assignable residues. Residues were considered linked if they could form a chain of

two or more residues. Any incorrect matches or assignments are labeled as errors. The run time is the time taken for one run of the assignment

algorithm using the optimal parameter set. The opt. time (optimization time) was the amount of time necessary to perform the grid search of input

parameters
a Assigned using experimental data sets (HNCACB and CBCA(CO)NH) and HN/N, Ca/Cb plots
b Assigned using experimental data sets (HNCO, HN(CA)CO, HNCA and HN(CO)CA) and HN/N, Ca/C0 plots
c Assigned using corresponding peak tables (HNCACB and CBCA(CO)NH) produced from BMRB chemical shift data
d Noise added (see text)
e Grid search 1(N, 0.04 ppm) 9 3(C, 0.04–0.07 ppm), recommended for\100 residues, real data
f Grid search 7(N, 0.045–0.065 ppm) 9 7(C, 0.04–0.07 ppm), recommended for[100 residues, real data
g Grid search 2(N, 0.03–0.045 ppm) 9 2(C, 0.01–0.03 ppm), recommended for\200 residues, BMRB
h Grid search 2(N, 0.03–0.045 ppm) 9 2(C, 0.005–0.03 ppm), recommended for[200 residues, BMRB
i Grid search 2(H, 0.003–0.045 ppm) 9 2(N, 0.03–0.045 ppm) 9 2(C, 0.01–0.03 ppm), special case
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shifts. Secondly, only glycines (0\Ca\ 25 ppm,

0 ppm\C0 \max.) could be used to assign linked chains

to the backbone since no other peaks gave characteristic

shifts in the carbon plot. Finally, for the grid search, a

smaller default value was used for the input parameter Cres.

(0.01–0.04 ppm) since these particular spectra are known

to be of a higher resolution than HNCACB/CBCA(CO)NH

experiments.

Addition of noise to synthetic peak lists

To test the robustness of the algorithm to noise, we added

differing amounts of artificial noise to the synthetic IGF2R

HNCACB and CBCA(CO)NH data tables. To give a general

estimate of error, we measured the average standard deviation

for correlated proton, nitrogen and carbon chemical shifts

between experimental HNCACB and CBCA(CO)NH data

sets for a protein of a similar size (TSG101, 145 residues).

Using these values (HN = 0.0007 ppm, N = 0.03 ppm,

C = 0.066 ppm), we randomly added noise up to and in-

cluding these values to our input data tables. Using the same

input parameters for each run, we increased the noise using

multiples of the average standard deviations. We categorized

the different amounts of noise qualitatively, where zero noise

represents perfect data and 0.59, 19, and 1.59 noise repre-

sent good quality data, normal data, and poor quality data,

respectively. We ran the algorithm for each noise category

using one parameter set (0.0045 ppm (HN), 0.045 ppm (N),

0.045 ppm (C1 and C2)), or a grid search sampling 49 different

parameter sets (0.0045 ppm, 1 parameter (Hres.); 0.04–

0.065 ppm, 7 parameters (Nres.); 0.04–0.07 ppm, 7 parameters

(Cres.)).

Comparison with other assignment algorithms

Our protocol was compared to AutoAssign (Zimmerman

et al. 1993) and Mars (Jung and Zweckstetter 2004) using

the same input data as we used for TSG101. AutoAssign

requires a FASTA sequence, as for our program, along with

peak lists for HNCACB, CBCA(CO)NH, and HSQC

spectra (our protocol does not require an HSQC). The peak

lists were output directly from CCPN Analysis in Sparky

format (Vranken et al. 2005) and uploaded to the Au-

toAssign WebServer (http://nmr.cabm.rutgers.edu/autoas

sign/cgi-bin/aaenmr.py). The output was compared to our

manual assignment.

Mars requires a FASTA sequence, a PSIPRED sec-

ondary structure prediction, an input file (we used the de-

fault input parameters), and a chemical shift file containing

N (i), HN (i), Cb (i - 1), Ca (i - 1), Cb (i) and Ca

(i) chemical shifts in the form of labeled pseudoresidues

(generic spin systems). The PSIPRED secondary structure

prediction was performed using the PSIPRED server

(Buchan et al. 2013; http://bioinf.cs.ucl.ac.uk/index.

php?id=780). The chemical shift table was produced by

combining our HNCACB and CBCA(CO)NH input data

files. Mars 1.2 was run using Mars GUI 1.0 on a quad core

3.0 GHz Linux computer with 8 GB RAM running Ubuntu

14.10. The output was compared to our manual assignment.

Results

Conventional backbone NMR resonance assignment of a

protein involves matching resonance peak positions in at

least one pair of complementary three-dimensional spectra,

e.g. HNCACB/CBCA(CO)NH, HN(CA)CO/HNCO, or

HN(CO)CA/HNCA. In this case we use HNCACB/

CBCA(CO)NH as an example. The HNCACB spectrum

contains six pieces of information for each amino acid

– chemical shift information for the HN, N, Ca and Cb

atoms for the current residue (i) and Ca and Cb chemical

shifts for the preceding residue (i - 1). This information is

contained in four carbon cross-peaks, all of which are

typically displayed in a ‘strip’ at the HN/N peak position

(see Fig. 2a). In theory using the HNCACB spectrum

alone, it is possible to assign the entire backbone of a

protein by matching the i and i - 1 carbon peaks for each

amino acid with other strips from the three dimensional

spectrum. However, the i - 1 carbon peak pair in any

given strip are often weak, so the HNCACB spectrum is

usually used in conjunction with the complementary

CBCA(CO)NH, which only contains strong i - 1 Ca and

Cb cross peaks.

In order to match Ca and Cb peak pairs between strips, a

search through the full set of strips from the complemen-

tary three-dimensional spectrum is carried out to find an-

other pair of peaks with the same chemical shift in the

carbon dimension. This is a tedious and slow process.

Alternatively, we can plot the Ca/Cb peak pairs as a two-

dimensional correlation plot (Fig. 2b), where peaks can be

quickly matched, either by eye, or automatically using a

nearest-neighbor search algorithm. HN/N peak pairs can be

matched in the same way, resulting in full assignment of a

backbone of a protein with the exception of prolines and

the N-terminal residue (Fig. 2c). Some amino acids, how-

ever, contain distinct carbon chemical shifts such as serine

and threonine where the magnitude of their Ca chemical

shift is smaller than their Cb chemical shift. In addition,

glycine has no Cb atom. For creating correlation plots to

match the peak positions from the two NMR data sets, it is

irrelevant how the carbon shifts are labeled, as long as the

two data sets are treated the same way. A convention was

chosen where the smaller carbon chemical shift (designated

as C1) is plotted on the x-axis, while the larger one
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(designated as C2 and C1 B C2) is on the y-axis. For gly-

cine residues, C1 and C2 values were set to equal Ca che-

mical shifts, so they can then be matched as the diagonal

peaks on the plot (Fig. 3a).

In practice, the carbon correlation plots from the two

NMR data sets may not overlay exactly. Some regional

shifts in the correlation plots caused by non-identical NMR

experimental conditions may be observed. Figure 3a shows

the C1/C2 correlation plot for the UEV domain of TSG101,

a 17 kDa protein where the HNCACB experiment has been

HN
i-2 Ni-2 HN

i-1 Ni-1

A

B

C

CBCA(CO)NH

HNCACB

HN
i Ni

Fig. 2 The use of correlations for NMR backbone resonance assign-

ment. Peaks and lines in red and blue indicate data from the HNCACB

and CBCA(CO)NH experiments, respectively. Solid green lines

represent the same sequential linkages, in each case made through a

Ca/Cb match. Dotted black lines represent intraresidue linkages (strips)

made through an HN/N match. a An illustration of traditional manual

assignment based on strips. Each strip contains idealized peaks

correlated with one residue’s backbone amide (HN and N). These

peaks include Ca and Cb (residue i) from the HNCACB spectrum (red),

and the Ca and Cb (residue i–1) from the CBCA(CO)NH spectrum

(blue). The weak HNCACB i - 1 peaks are also shown, but are not

used in our protocol and are not shown in b and c. Sequential

assignment involves linking pairs of peaks between strips, shown with

green lines. b An illustration of overlay of two pairs of correlation plots

showing idealized Ca/Cb and HN/N chemical shifts from HNCACB

(red stars) and CBCA(CO)NH (blue circles) spectra, signifying

resonance assignment pairs of the backbone. The Ca/Cb pairs of

chemical shifts from proline residues are not visible in the HNCACB

spectra, shown by the blue circle without any pairing in the carbon

correlation plot. The HN/N correlation matches peaks found in both

spectra coming from respective nuclei of residue i. Sequential assign-

ment involves matching peaks between plots, shown with green lines.

c The Ca/Cb correlation (green lines) matches peaks found in both the

HNCACB (residue i) and CBCA(CO)NH (residue i – 1) spectra. The

pathways for spin selection in HNCACB and CBCACONH are marked

in red and blue lines, respectively
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Fig. 3 Carbon and proton-nitrogen correlation plots of TSG101 prior

to segmented pattern matching Correlation of chemical shifts

obtained from the HNCACB spectrum are plotted as black stars,

while those from the CBCA(CO)NH spectrum are plotted as white

circles. a Correlation of C1 and C2 chemical shifts for the i residue

from the HNCACB data are overlaid on correlation of C1 and C2

chemical shifts for the i - 1 residue from the CBCA(CO)NH data.

Non-uniform deviations in the position of the correlation points

between the two experiments could be observed. Alanine, glycine,

serine, and threonine peaks are separated from the remaining residues

by their distinct chemical shift in the carbon correlation plot (regions

shown in dotted lines). This property was used to apply segmented

FFT translations and aided in assignment of chains to the backbone.

The region of C1 = 38.5–42.5 ppm and C2 = 54.6–58.4 ppm is

expanded in the inset to show how patterns in densely populated

regions are easily recognized. b Correlation of HN/N chemical shifts

from the HNCACB and CBCA(CO)NH data sets are overlaid. Those

correlation points that are not matched include missing peaks, proline

residues and the N- and C-terminus
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slightly modified (see ‘‘Materials and methods’’ section).

Quick visual inspection, however, still readily reveals

similarities in the clusters of points between the two data

sets (see Fig. 3a). In fact, the human brain is astonishingly

good at inferring how a cluster from one experiment should

be shifted in order to align with a cluster from another

experiment, at once providing several non-sequential

linkages between the two NMR data sets. Our pattern

matching approach, described in the ‘‘Materials and

methods’’ section and Fig. 1, approximates this feat by

individually aligning segments of these plots, allowing

multiple individual linkages to be made simultaneously.

Using our segmented pattern search and nearest-neighbor

peak matching, NMR resonances for the backbone of four

proteins were assigned automatically using real experimental

data, and compared to their assignment obtained manually

(see Table 1). GB1 is a 56 amino acid protein that contains

no proline residues. The HN/N plot could be globally shifted

directly by our pattern recognition algorithm, but with the C1/

C2 correlation it was beneficial to divide the data into four

regions to be shifted individually (e.g. serine/threonine,

glycine, alanine and others). After nearest neighbor peak

matching of the aligned data sets, a chain of 55 amino acids

was found (Fig. 4). The whole process took 0.89 s. The as-

signment was carried out with no prior knowledge of ex-

pected chemical shifts since the only residue with missing

information was the N-terminal methionine, as expected.

This meant that we could confidently assign 100 % of the

assignable residues in the protein, and they were found to be

in perfect agreement with the manual assignment,.

However, we found that changing the user-defined input

parameters had an effect on the outcome of the assignment

(Hres., Nres., and Cres., which essentially define the size of

the boxes used to turn the continuous chemical shift scale

to a discrete scale, a necessary process for the pattern

alignment—see the ‘‘Materials and methods’’ section). We

found that it was necessary to perform a grid search of the

input parameters to maximize the number of correct as-

signments and minimize the number of errors. In practice,

for GB1, we found that it was only necessary to alter Cres.

in the grid search, due to the higher accuracy of the proton

and nitrogen dimensions of the original spectra, which

meant that the assignment (100 % correct) was complete in

only two seconds (see Table 1). Each run of the grid search

was scored based on the number of unambiguously as-

signed residues, residues that could match the sequence in

two or more places (ambiguous), and residues that couldn’t

possibly match the backbone (due to error in linking or

assignment). The algorithm outputs the three runs that

score best in each category with the added caveat that they

also score well in all three categories, thus filtering out runs

that contain errors.

Fig. 4 Results after application of FFT cross-correlation, nearest-

neighbor matching, grid search, and assignment. Residues with

correctly assigned backbone resonances are represented by red boxes

overlaid on the sequence of GB1, ubiquitin, and TSG101. Residues

whose resonances could be correctly linked but not assigned to the

backbone are shown with blue boxes. Residues whose resonances

could not be assigned are written explicitly in black. The N-terminal

methionine and prolines are shown in grey
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With the larger ubiquitin (76 amino acids), the C1/C2

correlation plot became slightly more crowded than for

GB1. Even with the grid search of input parameter Cres., it

was impossible to assign linked chains to the backbone

with no prior knowledge of expected chemical shifts for

each residue type. GB1 could be assigned with no outside

information since it formed only one chain of linked resi-

dues. For ubiquitin, however, chain breaks were either

caused by missing spectral information due to prolines,

resonance broadening (E24 and G53) or failed matches due

to overlap of carbon shifts for glycine residues

(G47 = 45.47 ppm and G75 = 45.36 ppm). By using the

sectioning of the C1/C2 plot as a means of categorization of

amino acids, serine, threonine, alanine, and glycine could

be assigned. Using the assignments of these four residues

along with the known linkages we had already formed,

other residues could be assigned by inference. Using this

protocol, all but one residue chain could be correctly as-

signed to the backbone of ubiquitin in comparison to

manual assignment, resulting in coverage of 91.4 % of

assignable residues (Fig. 4). As for GB1, we found that

only the Cres. value had an effect on the outcome of the grid

search. The running time for the whole process including

the grid search was two seconds, of which the optimized

run took 0.69 s.

With the 145-residue TSG101, overlap and densely

crowded regions became more challenging. We found it

was necessary in this case to alter both the Cres. and Nres.

input parameters, using a larger number of possible values

(i.e. a 1 9 7 9 7 grid search). Using the optimal resolu-

tion, 22 amino acids (A2, V3, D34-K36, I86-K90, Y110,

L111, Y113-W117, M131-F135) could not be assigned due

to peak overlap of pairs of residues (V3/V89, K33/K108,

P112/V130, all in the C1/C2 plots). In addition, twenty

residues were either prolines or were next to proline and

therefore could not be assigned (P37, P60-R64, P71, P81-

P85, P91. P112, K118-P120, P139, P140, P145). One

residue was missing assignments due to spectral overlap

(S6). Despite these issues, 78 % of TSG101 residues could

be correctly assigned in comparison to the manual as-

signment (see Fig. 4). A further 11 % of all residues could

be linked correctly but not assigned. These unassigned

chains typically resided in regions of the sequence between

closely-spaced proline residues. Although these linked

residues do not provide assignments directly, nevertheless,

they provide linkage information that can be used in con-

junction with the known chemical shift information to

predict amino acid type manually, which would eventually

result in complete assignment. Running time for the grid

search was longer at 53 s, due to the increased size of the

grid search in comparison to ubiquitin, including a time of

1.04 s for the run at the optimal resolution.

Use of the assignment algorithm with synthetic data

sets from the BMRB

To test the broader application of the backbone assignment

algorithm to a wider variety of proteins, ten synthetic data

sets were obtained from the BMRB (Fonner et al. 2014;

Haines et al. 2013; Hilge et al. 2003; Jankowski et al. 2012;

Rajasekar et al. 2012; Shin et al. 2011; Tugarinov et al.

2002; Vathyam et al. 1999; Williams et al. 2012; Xu et al.

2013). With proteins ranging in size from 140 to 723 resi-

dues, sampling a variety of secondary structures, including a

paramagnetic-containing protein, a dimer, multidomain

proteins, and liganded proteins, we felt that we surveyed a

broad range of chemical shifts. Synthetic HNCACB and

CBCA(CO)NH data sets were produced from BMRB che-

mical shift tables and run through the assignment algorithm

(see Table 1). Ideally, in the absence of peak overlap, pro-

lines, missing data, and assignments of residues outside of

normal chemical shift ranges, the algorithm should attain

complete assignment. For four of the proteins (IGF2R,

NEAT1, diACP, and RalBP1), this was found to be the case

with the exception of a few residues for each protein, with

99.2, 96.9, 95.2 and 95.4 % correct assignment, respec-

tively. This is encouraging since the proteins range in size

from 140 to 265 residues, with all types of secondary

structure sampled. In particular, the near-complete assign-

ment of the 212-residue diACP and 265-residue RalBP1 is

surprising since all of the secondary structure for both pro-

teins is a-helical, which should be detrimental due to in-

creased overlap in the C1/C2 plot. What is most remarkable

is that assignment for each of the four proteins was complete

in a matter of seconds (for the optimized run), with a range

from 1.18 s (IGF2R) to 10.00 s (RalBP1), with the time

taken increasing concomitantly with protein size.

The algorithm does less well where many residues are

missing complete chemical shift data, e.g. for the

192-residue dimeric and paramagnetic superoxide dismu-

tase (39 % of residues missing some or all data),

213-residue ATP-bound ATPase (27 % missing) and the

tridomain 303-residue CrkL (27 % missing). Missing data

causes breaks in the linked chains formed by the algorithm,

decreasing the average length of the chains. Since the as-

signment process uses only serine, threonine, alanine, and

glycine chemical shifts to match chains of linked residues

to the protein sequence, any breaks will be detrimental to

unambiguous assignment. Despite this, the algorithm could

correctly assign a useful quantity of residues for superoxide

dismutase (75.2 %), ATPase (54.8 %), and CrkL (35.6 %),

with only one error in each case. A much larger percentage

of residues were correctly linked but could not be unam-

biguously assigned without further information (94.0, 87.1

and 73.9 % for each of the three proteins, respectively).
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As always, larger proteins are known to be difficult to

assign due to increased spectral overlap and line broaden-

ing. Using only HNCACB and CBCA(CO)NH data is not

recommended since Ca and Cb peak pairs readily overlap

with an increased number of residues. Despite this, our

algorithm was capable of assigning a considerable number

of residues in a small amount of time for two large pro-

teins, acting as the perfect starting point for a complete

assignment using other methods. The 360-residue VRK1

backbone assignment took only 1 min and 19 s (75.6 %

correctly assigned, 97.2 % correctly linked, 2 errors) in

comparison to the assignment of the 723-residue malate

synthase G in 1 min and 37 s (59.7 % correctly assigned,

98.1 % correctly linked, 9 errors). Although the time taken

to assign these proteins was around five times longer than

for the smaller proteins, due to the need for high resolution

in the carbon plots especially (i.e. low values of Cres.), the

assignments were fairly thorough and relatively error-free,

which could significantly reduce the tedium associated

with assigning such large proteins.

Extension to C0 chemical shifts

In manual assignment, the use of additional spectra can

reduce the number of overlap-associated errors while si-

multaneously increasing the number of correct assignments

for larger proteins. Six experimental data sets for the

226-residue GlnBP were collected to highlight the flex-

ibility of our assignment algorithm. Firstly, GlnBP was

assigned using the standard HNCACB and CBCA(CO)NH

data with the standard protocol of segmented FFT cross-

correlation algorithm to correct for non-linear shifts in the

data, nearest-neighbor pairing to make sequential links

within HN/N and Ca/Cb plots, and serine, threonine, gly-

cine, and alanine assignments to match the linked chains to

the backbone, which resulted in a 46.1 % assignment with

86.8 % linked residues and fifteen errors. In order to adapt

the protocol for HNCA, HN(CO)CA, HNCO and

HN(CA)CO spectra, rather than making the Ca/Cb plot, a

Ca/C0 plot was made by pairing HNCA (x-axis, Ca, i, pair

1) with HN(CA)CO (y-axis, C0, i, pair 1) and HN(CO)CA

(x-axis, Ca, i - 1, pair 2) with HNCO (y-axis, C0, i - 1,

pair 2), with each spectrum contributing one carbon-based

chemical shift (see Fig. 5a). To make the sequential links

between the chemical shifts, the HNCA/HN(CA)CO (Ca,

C0, residue i) pair was matched with the HNCO/

HN(CO)CA (Ca, C0, residue i - 1) pair. One advantage

with this method was that the Ca/C0 plot was significantly

better dispersed than the Ca/Cb plot, which along with the

increased spectral resolution of these data sets, resulted in

more matches being made (89.2 % residues linked versus

86.8 %). Despite the increased dispersion in the Ca/C0 plot,

only glycines could be distinguished based on unique

carbon shifts from the plot itself (Fig. 5b). This resulted in

a mere 9.3 % of residues being assigned unambiguously.

However, by simply utilizing the Cb shifts to help assign

those residues linked in the Ca/C0 experiments, three times

the number of residues can be assigned (27.9 %) with

eighteen of those assignments adding to those already as-

signed with the HNCACB and CBCA(CO)NH spectra.
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Fig. 5 Carbon correlation plots of GlnBP prior to pattern matching.

a Correlation of C1 and C2 chemical shifts for the i residue from the

HNCACB data (black stars) are overlaid on correlation of C1 and C2

chemical shifts for the i - 1 residue from the CBCA(CO)NH data

(white circles). Non-uniform deviations in the position of the

correlation points between the two experiments could be observed.

Alanine, glycine, serine, and threonine peaks are separated from the

remaining residues by their distinct chemical shift in the carbon

correlation plot (regions shown in dotted lines). This property was

used to apply segmented FFT translations and aided in assignment of

chains to the backbone. b Correlation of Ca and C0 chemical shifts for

the i residue from the HNCA (Ca, i) and HN(CA)CO (C0, i) data

(black stars) are overlaid on correlation of Ca and C0 chemical shifts

from the i - 1 residue from the HN(CO)CA (Ca, i - 1) and HNCO

(C0, i - 1) data (white circles). Glycine peaks are separated from the

remaining residues by their distinct chemical shift in the carbon

correlation plot. This property aided in assignment of chains to the

backbone. No segmentation was used for the FFT cross-correlation of

this plot
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Both types of assignment protocols result in good sequence

coverage of residues in linked chains (86.8 and 89.2 % for

the Ca/Cb and Ca/C0 methods, respectively), but when

combined cover 98.5 % of residues. This means that for

nearly all of the assignable residues we can obtain some

kind of linkage information from our protocols even if they

are not necessarily assigned. Most importantly, no errors

are replicated between the two assignment protocols, which

means that a higher confidence in assignment can be

reached by combining the two methods.

Robustness of the algorithm to the addition of noise

Protein size, sample quality, the presence of a cryogenic

probe, magnetic field strength, and acquisition parameters can

all contribute significantly to the final quality of NMR spectra.

Since our algorithm involves the matching of peaks between

sets of spectra, which can have varying degrees of accuracy

and signal-to-noise ratio, we tested the robustness of our

protocol to the addition of noise. We started with the synthetic

HNCACB and CBCA(CO)NH IGF2R data sets (140 resi-

dues), which by their nature contained identical peak positions

and are therefore representative of zero noise. As stated pre-

viously, the algorithm correctly assigned 99.2 % of assignable

residues for IGF2R in just half a second. Using multiples of the

noise calculated from a protein of similar size (TSG101, 145

residues), we artificially added random noise to the HNCACB

and CBCA(CO)NH data sets for IGF2R where 09, 0.59, 19,

and 1.59 noise corresponds to perfect, good, normal, and poor

quality data, respectively. As expected, with increased noise

the number of correct assignments decreased and the number

of errors increased (zero noise = 99.2 % correct, 0 errors;

0.59 noise = 25.6 %, 4 errors; 19 noise = 25.6 %, 4 errors;

1.59 noise = 6.8 %, 5 errors). Despite this large drop in as-

signed residues, even for poor quality data, the algorithm still

correctly links the majority of residues (97.7 %) with an av-

erage chain length of 13 residues between chain breaks. The

reason why the algorithm is not capable of assigning the

residues is due to matching errors. However, by using a grid

search of Nres. and Cres. input parameters and a scoring of the

output, as discussed earlier for TSG101 and GlnBP, we can

select for runs that result in a high percentage of correct as-

signments and with the least number of errors (see Table 1).

With good quality and normal quality data (0.59 and 19

noise), 99.2 % of assignments could be made, which is on a

par with perfect data (zero noise). Only with poor quality data

(1.59 noise) were errors encountered—79.7 % of residues

were correctly assigned and 3 errors were made. However, at

this level of noise, the presence of errors would indicate that

higher quality data would be desirable and could indicate the

need for sample optimization before collection of further ex-

periments. Interestingly, the increase in the amount of noise

had minimal effect on the running time for each of the grid

searches, which were complete in 30 s, 32 s, and 35 s for

0.59, 19, and 1.59 noise, respectively.

Comparison with other backbone assignment

algorithms

AutoAssign is one of the most widely used backbone as-

signment algorithms with nearly 300 citations in the PDB

(as of 03/03/2015) (Williamson and Craven 2009; Zim-

merman et al. 1993). Its popularity is most likely due to the

fact that it can cope with peak lists from a variety of

spectra, without any need for manual intervention, and runs

in a matter of seconds. Using TSG101 HNCACB and

CBCA(CO)NH peak lists and either AutoAssign or our

protocol, 58.4 and 76.9 % of residues can be assigned, re-

spectively. Although both programs make the same number

of incorrect assignments (6.9 %), these errors are not

replicated between the two programs. As such, the programs

could be used in a complementary manner to reinforce

correct assignments and reduce the overall number of errors

of both programs, especially since AutoAssign has the ca-

pability of forming spin systems directly from peak lists.

Mars (Jung and Zweckstetter 2004) was also used to

assess our protocol in comparison to other backbone as-

signment systems available. Using the same input data but

with the addition of a PSIPRED secondary structure pre-

diction (Buchan et al. 2013), Mars correctly assigned a

large proportion of residues (97.7 %) with no errors, and in

only 20 s (3 GHz, quad core Linux), plus 9 min for the

PSIPRED prediction. Like our protocol, Mars requires the

production of generic spin systems (pseudoresidues) and

performs better from manually curated peak lists (Jung and

Zweckstetter 2004).

Two of the larger BMRB proteins we used were also

previously chosen in testing the effectiveness of Mars (Jung

and Zweckstetter 2004). Using only Ca and Cb data, Mars

could assign 95.7 % of assignable superoxide dismutase

residues and 76.5 % of malate synthase G residues with no

errors (Jung and Zweckstetter 2004), which compares to

75.2 % (1 error) and 59.7 % (9 errors), respectively, for our

protocol. It is apparent from these comparisons that the more

information or data being incorporated into the assignment

procedure, the better the outcome.

Discussion and conclusions

We evaluated the possible benefits of our global approach

in NMR resonance identification and showed that a seg-

mented pattern matching method could rapidly assign the

majority of NMR resonances of protein backbones. Manual

backbone assignment of NMR resonances for the proteins

used in this study would typically take anything between a
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few hours to a few weeks. Segmenting the pattern search

areas into sections could solve the problem of when non-

ideal experimental setup introduces non-uniform errors in

the carbon chemical shifts. Optimizing the pattern search

variables, such as the resolution chosen to discretize the

chemical shift scale in each dimension, further improves

the assignment outcome.

Even though we illustrated our method using HNCACB

and CBCACONH NMR experiments, the approach can

easily be used for matching any other NMR data sets, as we

have shown for HNCA, HN(CO)CA, HNCO, and

HN(CA)CO experiments. The general concept is to display

any two variables in the NMR data sets that need to be

compared and matched (in our example these are the two

carbon chemical shifts or the proton and nitrogen chemical

shifts) as a two-dimensional correlation plot where we can

gain several advantages. First, we establish a global map of

the problem and this is more conducive to efficient au-

tomation. We can choose to use a pattern recognition al-

gorithm as a way to automate the process. This is a much

faster process and can scale up to larger proteins much

more favorably than the serial approach typically used in

comparing strips of NMR spectra. Furthermore, missing or

overlapped points in the data sets, typically encountered in

larger proteins, are not detrimental to the pattern recogni-

tion algorithm. Second, any problems such as non-uniform

chemical shift errors are easily identified in a global sense

and a solution can be adopted in the analysis phase of the

experiment in a straightforward manner. Finally, the ap-

proach can be optimized and the result be evaluated to

provide a global goodness of fit.

It is important to point out that the FFT cross-correlation

algorithm that we used in our pattern matching protocol is

similar to the algorithm that Buchner et al. (2013) used in

referencing chemical shifts in NMR experiments prior to

analysis. Their algorithm, as well as ours, is a choice based

on practical reasons: convenience and speed. In fact, the

majority of time that it took to run our simple program was

due to bookkeeping during the grid search. Once the sys-

tem was optimized, it took merely a second on a modest

computer to get the results. Our concept could easily be

integrated into NMR analysis software where the two

correlation plots can be displayed and the user can match

the points visually, thus streamlining the backbone NMR

resonance assignment. The limit of two variables at the

moment is due to the pattern recognition algorithm. This

could be overcome by creating multiple two dimensional

correlation plots that can be compared simultaneously.

Furthermore, prior knowledge can be added into the ana-

lysis, such as a predictive correlation network in the NMR

resonances from expected distances between protons in

regular secondary structure of a protein (Herrmann et al.

2002; Volk et al. 2008). This can potentially further

improve the efficiency of the global matching process in

NMR data analysis.
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15N backbone and side chain NMR resonance assignments of the

N-terminal NEAr iron transporter domain 1 (NEAT 1) of the

hemoglobin receptor IsdB of Staphylococcus aureus. Biomol.

NMR Assign. 8:201–205

Garrett DS, Powers R, Gronenborn AM, Clore GM (1991) A common

sense approach to peak picking two-, three- and four-dimen-

sional spectra using automatic computer analysis of contour

diagrams. J Magn Reson 95:214–220

Gronenborn AM, Filpula DR, Essig NZ, Achari A, Whitlow M,

Wingfield PT, Clore GM (1991) A novel, highly stable fold of

the immunoglobulin binding domain of streptococcal protein G.

Science 253:657–661

Grzesiek S, Bax A (1992a) Correlating backbone amide and side

chain resonances in larger proteins by multiple relayed triple

resonance NMR. J Am Chem Soc 114:6291–6293

J Biomol NMR (2015) 62:143–156 155

123



Grzesiek S, Bax A (1992b) Improved 3D triple-resonance NMR

techniques applied to a 31 kDa protein. J Magn Reson 96:432–440

Güntert P (2009) Automated structure determination from NMR

spectra. Eur Biophys J 38:129–143

Haines AS, Dong X, Song Z, Farmer R, Williams C, Hothersall J,
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